Watershed Influences and In-Lake Processes – a Regional Scale Approach to Monitoring a Drinking Water Reservoir, Lake Houston, TX

Prepared in Cooperation with the City of Houston

Introduction

- Description of study area
- Watershed monitoring
- In-Lake monitoring
- Preliminary evaluation

Study Area

- Lake Houston located northeast of downtown Houston, TX
- Man-made reservoir with “small” contributing watershed
- Significant source water for Houston (pop. 4.5 mill)

Monitoring Locations

- Two sites selected above Lake Houston:
 - 08068500 Spring Creek near Spring, TX
 - Drainage area: 405 mi²
 - Streamflow data: 1939-present
 - Water-quality data: 1999-present
 - 08070200 E. Fk. San Jacinto River near New Caney, TX
 - Drainage area: 388 mi²
 - Streamflow data: 1984-present
 - Water-quality data: 1984-99; 2005-present
Monitoring Locations

- Three locations chosen in southwestern quadrant of lake
- Nearby drinking water raw intake
- Current set-up provides information at, upstream, and downstream of intake

In-Lake Monitoring

- Lake Houston site B (near intake) monitoring mechanism
- Lake Houston Site B (near intake)
Watershed Monitoring Approach

- Continuous water-quality monitoring
 - Turbidity, Dissolved Oxygen, Temp., Spec. Cond., and pH
- Discrete sampling
 - Nutrients, sediment, and others

In-Lake Monitoring Approach

- Continuous water-quality monitoring
- Discrete sampling
 - Nutrients, Geosmin, MIB, Phytoplankton (species), and others

Time of Travel Estimation
Preliminary Results

In-lake processes

- Continuous vertical profile data
- Stratification
- Rapid mixing

Phytoplankton Analysis

- Seasonal patterns in cyanobacterial biovolume were also similar among sites, although peak biovolume was observed in mid-August at Site B and late-September at sites A and C (a)
- The biovolume of potential taste-and-odor producers was significantly greater (ANOVA by site and date, p=0.03; depths treated as replicates) at Site A than Site B during late September (b)

Conclusions

- Mobile multi-depth lake water quality monitoring gages are a viable method for collecting and transmitting data
- When combined with watershed water-quality information the effects of watershed influences on the water-quality in the lake can be evaluated at multiple scales

- Discrete sampling for ancillary constituents can be used to develop methods by which to estimate loads and possibility of occurrence
- Water-quality techniques developed through this project can be scaled and modified to fit most project needs
Watershed Assessment Team

- Mike Burnich mburnich@usgs.gov
- Jeff East jaweast@usgs.gov
- Jennifer Graham jgraham@usgs.gov
 – Limnologist (USGS – KS)
- Matt Milburn mmilburn@usgs.gov
- Tim Oden toden@usgs.gov
- Ken VanZandt vanzandt@usgs.gov
 – Limnologist (USGS – AR)
- Michael Lee mllee@usgs.gov
- Michael Tung mtung@usgs.gov

Contact Information

USGS Texas Water Science Center
Gulf Coast Program Office
The Woodlands, Texas

Michael J. Turco – mjturco@usgs.gov
www.usgs.gov