Efficacy of Vegetative Filter Strips to Reduce Phosphorous (P) in Runoff From Dairy Waste Application Fields

Subhasis Giri*, Saqib Mukhtar*, Roger Wittie**

*Department of Biological and Agricultural Engineering, Texas A&M University, College Station
**Department of Agribusiness, Agronomy, Horticulture and Range Management, Tarleton State University, Stephenville

Content
- Background Information
- Objective
- Theory
- Materials and Method
- Result and Discussion
- Conclusion

Background Information
- Highly concentrated Dairy operation
- Runoff of pollutants such as P from the Waste application fields (WAFs) is a major environmental concern
- Impaired segments of North Bosque River

Environmental Concern
- Water quality degradation due to:
 - High Phosphorous content
 - Accelerated Eutrophication
 - Depletion of DO level

Objectives
- To select the most effective treatment among Sunflower, Coastal Bermuda (CB), Cool Season Grass (CSG) and Warm Season Grass (WSG) in reducing runoff P
- To recommend a combination of both warm and cool season treatments for year round better uptake of P from soil

P Extraction by the Warm Season Grasses

Ideal Soil P extraction
Average soil P extraction

Month
January
July
December
P Extraction by Cool Season Grasses

Ideal Soil P extraction

Average soil P Extraction

Cool Mass Extraction

Month

January
June
December

Combined Effect of P Extraction by Warm and Cool Season Grasses

Ideal Soil P Extraction

P Extraction by Cool Or Warm Season Grasses

Month

January
June
December

Materials and Methods

VFS Plots

Creek

Warm season forb (WSF) - Sunflower

Coastal Bermuda (CB)

VFS Treatments

- Cool Season Grass (CSG) - Wild Rye
- Warm Season Grass (WSG) - Indian Grass, Switch Grass, and Gama Grass
- Warm season forb (WSF) - Sunflower
- Coastal Bermuda (CB)

Schematic of VFS Plots

Field Plots Set-Up

24inch
30 gallon
Sampling Protocol

- Barrel water and sediments were weighed to determine runoff mass and volume.
- A thoroughly mixed 1-L composite sample collected and stored on ice.
- Samples analyzed for TP, SOP and TSS.

Results and Discussion

<table>
<thead>
<tr>
<th>Date</th>
<th>Rainfall (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/20/06</td>
<td>11.4</td>
</tr>
<tr>
<td>04/20/06</td>
<td>4.1</td>
</tr>
<tr>
<td>04/29/06</td>
<td>5.4</td>
</tr>
<tr>
<td>05/03/06</td>
<td>4</td>
</tr>
<tr>
<td>05/04/06</td>
<td>2</td>
</tr>
<tr>
<td>05/04/07</td>
<td>3.1</td>
</tr>
<tr>
<td>05/11/07</td>
<td>4.2</td>
</tr>
<tr>
<td>05/30/07</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Comparison of Runoff among Treatments

Comparison of TSS among Treatments

Soil TP and SOP

<table>
<thead>
<tr>
<th>Plots</th>
<th>TP (mg/kg)</th>
<th>SOP (mg/kg)</th>
<th>% SOP</th>
<th>STDV</th>
<th>TP STDV</th>
<th>SOP STDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>37.6</td>
<td>9</td>
<td>23.9</td>
<td>11.8</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>CSG</td>
<td>28.7</td>
<td>7</td>
<td>24.4</td>
<td>9</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Coastal</td>
<td>38.9</td>
<td>5.4</td>
<td>14</td>
<td>13.8</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>WSG</td>
<td>44.9</td>
<td>5.1</td>
<td>13.1</td>
<td>17.7</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Comparison of TP among Treatments
Comparison of SOP among Treatments

<table>
<thead>
<tr>
<th>Date</th>
<th>Mass (mg)</th>
<th>Parameter CSG</th>
<th>CB</th>
<th>sunflower</th>
<th>WSG</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/20/06</td>
<td>0.3</td>
<td>24.4</td>
<td>14</td>
<td>18.7</td>
<td>13.4</td>
<td>23.9</td>
</tr>
<tr>
<td>04/20/06</td>
<td>1.1</td>
<td>13.4</td>
<td>18.8</td>
<td>64.5</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>04/29/06</td>
<td>6.6</td>
<td>51.3</td>
<td>142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/03/06</td>
<td>8.7</td>
<td>4.3</td>
<td>169</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/04/06</td>
<td>7.5</td>
<td>1211</td>
<td>2677</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOP in Soil & Runoff and TSS Load in Runoff

Summary

- Sunflower was the most effective in reducing TP in runoff followed by CB, WSG and CSG
- Lessening of P load in runoff was due to removal of sediment
- Cleaner water was collected in Sunflower and WSG treatment plots

Future Work

- Collection of more runoff data samples from treatment plots
- Tissue analysis of treatment plants

Acknowledgement

This project was administrated by the Texas State Soil and Water Conservation Board and supported with EPA-CWA section 319 (h) funds

Thank You!